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Abstract

The transient dynamics of a linear dynamical system with elastic barriers is studied. The system is excited by a

deterministic transient force whose Fourier transform is limited to a narrow frequency band. As the system responds it

may impact the elastic barrier, therefore, the system behavior is nonlinear. In order to measure the degree of nonlinearity

of the system, one looks for the mechanical energy transferred outside the frequency band of excitation as a function of the

parameter Z defined by �=a, in which � is the size of the barrier gap and a is the amplitude of the excitation force. The

mechanical energy transferred outside the frequency band of excitation can potentially be a source of excitation for other

subsystems. Consequently, quantification of this energy transfer is an important step in developing an understanding of the

nonlinear dynamical system behavior. In addition, it is well known that this type of nonlinear dynamical system is very

sensitive to uncertainties. For this reason the system is considered to be deterministic and also stochastic in order to take

into account random uncertainties. The proposed analysis is applied to a Timoshenko beam having its motion constrained

by a symmetric elastic barrier at its free end. The confidence region of the random mechanical energy transferred outside

the excitation band is shown as a function of Z for several levels of model and data uncertainties. From this, the robustness

of the predictions can be analyzed with respect to model and data uncertainties.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The nonlinear dynamics of linear dynamical systems with barriers inducing impacts has received
considerable attention in the last two decades. Although there are some engineering systems where impacts are
part of the project, most of the time this phenomenon is related to wear, fatigue and noise as, for example, in
the case of gear boxes. The interest in vibro-impact systems arises due to their intrinsic nonlinear characteristic
which prevents their study through more traditional methods such as modal analysis. Actually, systems of this
kind have extremely complex dynamic behavior, sometimes even chaotic. Therefore, they are normally studied
with bifurcation diagrams and Poincaré maps. However, most of the vibro-impact systems investigated so far
consist of simple ones with a single degree of freedom. It is expected that the flexibility of a structure will play
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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an important role in its impact response, especially through the excitations of many of its degrees of freedom.
Also one expects some exchange of energy among modes due to impacts. A lot of works have been published
concerning one single degree of freedom and multi-degrees of freedom deterministic systems excited by
deterministic harmonic signals or by narrow- or wide-band stochastic processes (see for instance Ref. [1]).
Some works were also published on the identification of restoring force nonlinearities from the system
response to white noise excitation (see for instance [2] for single degree of freedom systems). A review of such
works can be found in the recent paper by Dimentberg and Iourtchenko [3]. It should be noted that
deterministic continuous systems with impacts have received less attention, probably because of the difficulties
of analyzing these types of nonlinear dynamical problems using analytical or numerical methods. However,
some recent representative works of this type can be found in Refs. [4–8].

Some of the features of this work are:
�
 The linear system is not a single-, nor a multiple-degree-of-freedom system, it is a continuous system.
Nevertheless, in order to simplify the presentation and also to show that the methodology applies to a
general dynamical system, we start with a discretization of the continuous system by using finite element
methods.

�
 The excitation is not a narrow-nor a broad-band stochastic process (including white noise), nor is it a

deterministic harmonic signal. In this paper the excitation will be modelled as a deterministic narrow-band
signal. This choice is important because it gives some robustness to the excitation. The band is centered
around one of the natural frequencies of the linear system (without impact) and the width of the band is
chosen in order to allow for modifications of the system to be taken into account (nonlinearities and
uncertainties).

�
 It deals with deterministic and also stochastic modelling of the continuous system. The stochastic aspects

being induced by the uncertainties in the data and in the model (the matrices that represent the linear
continuous system are random).

�
 Measures of nonlinearities are proposed. In order to analyze the degree of nonlinearity of the system, one

looks for the mechanical energy transferred outside the frequency band of excitation as a function of the
parameter Z, defined by �=a, where � is the size of the barrier gap and a is the amplitude of the excitation
force. When � is zero or infinity, there are no impacts. When it is between this two bounds the continuous
system-barrier behaves nonlinearly for a sufficiently high amplitude a. It turns out that the nonlinearity
depends on Z. The the amount of energy that is transferred outside the band of excitation is measured to
evaluate the possiblity of dangerous consequences like exciting sensitive subsystems whose lowest
eigenfrequency is outside the band of excitation.

�
 Stochastic systems are considered in order to evaluate the robustness of the numerical prediction of the

energy transferred with respect to data and model uncertainties.

This paper is divided into four parts. Section 2 is devoted to the modelling and analysis of the deterministic
nonlinear dynamical system. In Section 3 the stochastic modelling of the system in order to take into account
data and model uncertainties is presented. Section 4 deals with numerical applications; the example used is a
Timoshenko beam with an elastic barrier. Finally, general analysis and conclusions are presented in Section 5.

2. Modelling and analysis of the deterministic nonlinear dynamical system

In this section the mean model of the dynamical system with excitation; the reduced mean model obtained
by using the elastic modes of the linear mean dynamical system; and, finally, the different energies one needs to
analyze the energy transferred outside the excitation band are described.

2.1. Finite element model of the mean nonlinear dynamical system

The main theme of the paper is a study of a linear continuous system with elastic barriers that induce
nonlinearities through impact. However the methodology presented is general and can be applied to a larger
class of problems, as, for example, those related to a linear system interacting with a subsystem that has
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nonlinearities, as is the case with an elastic barrier. In the methodology one starts with a finite dimensional
system that could be the result of a discretization process. This system, referred to as the mean model, is
described by the following matrix equation in Rm,

½M�€yðtÞ þ ½D�_yðtÞ þ ½K�yðtÞ þ fNLðyðtÞ; _yðtÞÞ ¼ fðtÞ, (1)

where ½M�; ½D�; ½K� are the mass, damping, and stiffness matrices, that are supposed to be symmetric and
positive-definite real matrices, yðtÞ is the displacement vector, fNLðyðtÞ; _yðtÞÞ describes the nonlinear vector
forces, and fðtÞ is the applied vector load. The nonlinear mapping ðy; zÞ 7! fNLðy; zÞ is assumed to be such that
fNLð0; 0Þ ¼ 0. The vector load fðtÞ is written as

fðtÞ ¼ agðtÞf0 (2)

in which a is the amplitude and f0 is a normalized vector describing the position of the applied forces. The
impulse t 7! gðtÞ is a square integrable real-valued function on R whose Fourier transform o 7! bgðoÞ ¼R
R
e�iotgðtÞdt has a bounded support B2 [ B2 with

B2 ¼ ½omin;omax�; B2 ¼ ½�omax;�omin�. (3)

The notation B2 will be explained in Section 2.3. In addition, it is assumed that maxo2B2
jbgðoÞj ¼ 1.
2.2. Reduced mean model

Let ff1; . . . ;fmg be an algebraic basis of Rm. The reduced mean model of the dynamic system whose mean
finite element model is defined by Eq. (1) is obtained by projection of Eq. (1) on the subspace Vn of Rm

spanned by ff1; . . . ;fng with n5m. Let ½Fn� be the ðm� nÞ real matrix whose columns are the vectors
ff1; . . . ;fng. The generalized applied force FnðtÞ is an Rn-vector such that FnðtÞ ¼ ½Fn�

TfðtÞ. The generalized
mass, damping, and stiffness matrices, ½Mn�, ½Dn�, and ½Kn�, are positive-definite symmetric ðn� nÞ real
matrices such that ½Mn� ¼ ½Fn�

T½M�½Fn�, ½Dn� ¼ ½Fn�
T½D�½Fn�, and ½Kn� ¼ ½Fn�

T½K�½Fn�. Consequently,
the reduced mean model of the nonlinear dynamic system, written as the projection yn of y on Vn, can be
written as

ynðtÞ ¼ ½Fn�q
nðtÞ (4)

in which the vector qnðtÞ 2 Rn of the generalized coordinates verifies the mean nonlinear differential equation,

½Mn�€q
n
ðtÞ þ ½Dn�_q

nðtÞ þ ½Kn�q
nðtÞ þ Fn

NLðq
nðtÞ; _qnðtÞÞ ¼ FnðtÞ, (5)

where, for all q and p in Rn,

Fn
NLðq; pÞ ¼ ½Fn�

TfNLð½Fn�q; ½Fn�pÞ. (6)

2.3. Quantification of the transferred energies outside the excitation band

The objective of this section is to quantify the mechanical energy transferred outside the excitation band. It
is assumed that Eq. (1) has a unique solution t 7! yðtÞ such that y and _y are square integrable vector-valued
functions on R. An approximation of this solution is computed by using the reduced mean model defined by
Eqs. (4)–(6). The positive frequency band Rþ ¼ ½0;þ1½ is then written as

Rþ ¼ ½0;þ1½¼ B1 [ B2 [ B3 (7)

in which B1 ¼ ½0;omin½ and B3 ¼�omax;þ1½. The sets B1 and B3 are the bands outside the frequency band of
excitation B2. The total mechanical energy, denoted by ee, of the nonlinear dynamical system corresponding to
the solution mentioned above is written as

ee ¼ Z
R

1

2
h½M�_yðtÞ; _yðtÞi þ

1

2
h½K�yðtÞ; yðtÞi

� �
dt. (8)
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Let byðoÞ ¼ R
R
e�iotyðtÞdt be the Fourier transform of y. Using the Parseval formula, Eq. (8) yields

ee ¼ Z
R

hðoÞdo ¼ 2

Z
Rþ

hðoÞdo (9)

in which hðoÞ is the density of the mechanical energy in the frequency domain which is written as

hðoÞ ¼
1

2p
1

2
ho2½M�byðoÞ; dyðoÞi þ 1

2
h½K�byðoÞ; dyðoÞi� �

. (10)

From Eqs. (7) and (9), it can deduced that ee ¼ ee1 þ ee2 þ ee3 (11)

in which

eej ¼ 2

Z
Bj

hðoÞdo; j ¼ 1; 2; 3. (12)

The transferred mechanical energy outside the excitation band B2 is denoted by ee13 which is defined byee13 ¼ ee1 þ ee3. (13)

By using the reduced mean model defined by Eqs. (4)–(6), the approximation hn
ðoÞ of hðoÞ defined by Eq. (10)

can be written as

hn
ðoÞ ¼

1

2p
1

2
ho2½Mn�bqn

ðoÞ;bqn
ðoÞi þ

1

2
h½Kn�bqn

ðoÞ;bqn
ðoÞi

� �
(14)

in which bqn
ðoÞ ¼

R
R
e�iotqnðtÞdt is the Fourier transform of qn. The corresponding energies computed with this

approximation are denoted by een, een
1, een

2, een
3, een

13. In order to explore the results in a non-dimensional way one
introduces the following parameters:

en
1 ¼

een
1een ; en

2 ¼
een
2een ; en

3 ¼
een
3een ; en

13 ¼
een
13een . (15)

Consequently, one has,

en
1 þ en

2 þ en
3 ¼ 1; en

13 þ en
2 ¼ 1. (16)

The en
13 represents the percentage of mechanical energy transferred outside the frequency band of the

excitation.

3. Modelling and analysis of the nonlinear dynamical system with random uncertainties

The first source of uncertainties in this type of problem is due to the mathematical-mechanical modelling
process leading to the boundary value problem. This type of uncertainty is structural, and cannot be
represented as, simply, the usual variation of parameters [9,10]. These uncertainties are called the model

uncertainties. The second source of uncertainties come from parameters such as geometry, material properties,
boundary and initial conditions, etc. The uncertainties in these parameters are called data uncertainties. It is
worthwhile to remark that the errors related to the construction of an approximation of the solution of the
boundary value problem, that have to be controlled in order to meet the specifications of the numerical
approximation, are not uncertainties.

For the class of systems studied here the sources of uncertainties are in the data related to the nonlinear term
and in the data and model associated with the linear part of the system.

3.1. Probabilistic modelling of uncertainties

From this point one constructs a probability model of uncertainties from the mean reduced model defined
by Eqs. (4)–(6). All the random variables are defined in a probability space ðY;F;PÞ.
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3.1.1. Parametric probabilistic model of data uncertainties for the nonlinear term

Usually, data uncertainties are modelled by using a parametric probabilistic approach consisting of
modelling each uncertain parameter by a random variable whose probability distribution has to be
constructed using the available information. The nonlinear term Fn

NLðq
nðtÞ; _qnðtÞÞ in Eq. (5) is rewritten

as Fn
NLðq

nðtÞ; _qnðtÞ; sÞ in which s is an Rn-vector of uncertain parameters. The probabilistic modelling of
vector s is as a Rn-valued random variable whose probability distribution on Rn is denoted by PSðdsÞ. The
available information for constructing PSðdsÞ depends on the nature of the parameters constituting the vector
s (for instance, positivity, boundedness of components, etc.). When this information is defined the probability
distribution can be constructed by using the maximum entropy principle with the constraints defined by the
available information [11–13].
3.1.2. Non-parametric probabilistic model of model and data uncertainties for the linear part

Model uncertainties cannot be taken into account by using the parametric probabilistic approach. A non-
parametric probabilistic approach can be used to take into account model uncertainties and data uncertainties
[9,10]. The principle of construction for such a non-parametric probabilistic approach to uncertainties, for the
linear part of the nonlinear dynamical system whose reduced mean model is defined by Eqs. (4)–(6), consists of
replacing the generalized mass, damping, and stiffness matrices in Eq. (5) by the random matrices ½Mn�, ½Dn�,
and ½Kn� whose probability distributions have been constructed by using the maximum entropy principle with
an adapted available information. The explicit form of the probability distributions of the random matrices
½Mn�, ½Dn�, and ½Kn� are given in Refs. [9,10].
3.1.3. Stochastic reduced model

The stochastic transient response of the nonlinear dynamic system, constructed by using a non-parametric
probabilistic approach for model and data uncertainties, is the stochastic process YnðtÞ, indexed by R, with
values in Rm, such that

YnðtÞ ¼ ½Fn�Q
nðtÞ. (17)

The stochastic process Qn, defined in the probability space ðY;F;PÞ, indexed by R, with values Rn, is such
that

½Mn� €Q
n
ðtÞ þ ½Dn� _Q

n
ðtÞ þ ½Kn�Q

nðtÞ þ Fn
NLðQ

nðtÞ; _Q
n
ðtÞ;SÞ ¼ FnðtÞ 8t 2 R. (18)

Let jjjQnjjj be the norm such that

jjjQnjjj2 ¼ E

Z
R

kQnðtÞk2 dt

� �
, (19)

where E is the mathematical expectation and kuk2 ¼ u2
1 þ � � � þ u2

n is the square of the Euclidean norm of u in
Rn. It is assumed that the nonlinear term is such that Eq. (18) has a unique second-order mean-square solution
such that

jjjQnjjjoþ1; jjj _Q
n
jjjoþ1. (20)

3.2. Probabilistic quantification of the transferred energies outside the excitation band for the uncertain system

The next step is to adapt the methodology described in Section 2.3 so that it can be applied to the reduced
stochastic system defined by Eqs. (17) and (18). The random total mechanical energy associated with een is
denoted by eEn

and is such that

eEn
¼

Z
R

1

2
h½M� _Y

n
ðtÞ; _Y

n
ðtÞi þ

1

2
h½K�YnðtÞ;YnðtÞi

� �
dt. (21)
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The density of the random mechanical energy in the frequency domain associated with hn
ðoÞ defined by

Eq. (14) is denoted by HnðoÞ and can be written as

HnðoÞ ¼
1

2p
1

2
ho2½Mn�

bQn
ðoÞ; bQn

ðoÞi þ
1

2
h½Kn�

bQn
ðoÞ; bQn

ðoÞi
� �

(22)

in which bQn
ðoÞ ¼

R
R
e�iotQnðtÞdt is the Fourier transform of Qn.

Let Hn
dBðoÞ be the density of the random mechanical energy in dB normalized with respect to the total

mechanical energy eelin of the linear mean system, thus

Hn
dBðoÞ ¼ log10ðH

nðoÞ=eelinÞ. (23)

Let eEn
1,
eEn
2,
eEn
3 and eEn

13 be the random energies associated with een
1, een

2, een
3 and een

13 such that

eEn

j ¼ 2

Z
Bj

HnðoÞdo; j ¼ 1; 2; 3; eEn

13 ¼
eEn

1 þ
eEn

3. (24)

As in Section 2.3, this random energies are normalized:

En
1 ¼

eEn
1eEn
; En

2 ¼
eEn
2eEn
; En

3 ¼
eEn
3eEn
; En

13 ¼
eEn
13eEn
. (25)

Consequently, the random energies satisfy:

En
1 þ En

2 þ En
3 ¼ 1; En

13 þ En
2 ¼ 1. (26)

En
13 represents the percentage of the random mechanical energy transferred outside the frequency band of the

excitation.

3.3. Stochastic solver and convergence

In this section a stochastic solver is introduced and the stochastic convergence is analyzed. The Monte Carlo
numerical simulation and mathematical statistics are used for solving the stochastic equations defined by
Eqs. (17) and (18). Let SðyÞ, ½MnðyÞ�, ½DnðyÞ� and ½KnðyÞ� be independent realizations of the random variable S
and the random matrices ½Mn�, ½Dn� and ½Kn�, respectively, for y 2 Y.

3.3.1. Construction of realizations of random variable S

Each realization SðyÞ of random variable S is usually constructed by using a random generator associated
with the probability distribution PSðdsÞ. Because the generation is standard details will not be given here.

3.3.2. Construction of realizations of random matrix variables ½Mn�, ½Dn�, ½Kn�

Let ½An� be any of the three random matrices above and let ½An� be its mean value which is a positive-definite
matrix. Its Cholesky factorization yields ½An� ¼ ½Ln�

T½Ln�. Each realization ½AnðyÞ� can be generated by using
the following algebraic representation [9,10]:

½An� ¼ ½Ln�
T½Gn�½Ln� (27)

in which the positive-definite random matrix ½Gn� is written as

½Gn� ¼ ½Ln�
T½Ln�. (28)

In Eq. (28), ½Ln� is an upper triangular random matrix with values in MnðRÞ such that:
(1)
 The random variables f½Ln�jj0 ; jpj0g are independent.

(2)
 For joj0, the real-valued random variable ½Ln�jj0 can be written as ½Ln�jj0 ¼ snUjj0 in which sn ¼

dðnþ 1Þ�1=2 and where Ujj0 is a real-valued Gaussian random variable with zero mean and variance equal
to 1. ffiffiffiffiffiffiffiffip
(3)
 For j ¼ j0, the positive-valued random variable ½Ln�jj can be written as ½Ln�jj ¼ sn 2Vj in which sn is
defined above and where Vj is a positive-valued gamma random variable whose probability density
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function pVj
ðvÞ with respect to dv is written as

pVj
ðvÞ ¼ 1RþðvÞ

1

G
nþ 1

2d2
þ

1� j

2

� � vðnþ1=2d
2
Þ�ð1þj=2Þe�v, (29)

where 1RþðvÞ ¼ 1 if v 2 Rþ and ¼ 0 if not, and where G is the usual Gamma function. This algebraic
representation includes d which is a positive parameter allowing control of the dispersion of the random
matrix ½An�. This parameter has to be given for each random matrix and controls the level of uncertainties.
In particular, it controls the uncertainties of mass, damping or stiffness of the linear continuous system of
the nonlinear dynamical system.
3.3.3. Construction of realizations of the solution of the stochastic reduced system

The realization Ynðt; yÞ for y 2 Y of YnðtÞ defined by Eq. (17) is given by

Ynðt; yÞ ¼ ½Fn�Q
nðt; yÞ (30)

in which the realization fQnðt; yÞ; t 2 Rg of the stochastic process fQnðtÞ; t 2 Rg, is the solution of the following
deterministic nonlinear reduced equation:

½MnðyÞ� €Qnðt; yÞ þ ½DnðyÞ� _Qnðt; yÞ þ ½KnðyÞ�Qnðt; yÞ

þ Fn
NLðQ

nðt; yÞ; _Qnðt; yÞ;SðyÞÞ ¼ Fnðt; yÞ 8t 2 R. ð31Þ

This equation is solved by using an implicit unconditionally stable scheme such as the Newmark algorithm. At
each time step, the nonlinear algebraic equation coming from the scheme is solved by iteration.

3.3.4. Stochastic convergence

The mean-square convergence of the second-order stochastic solution of Eq. (18) with respect to dimension
n of the stochastic reduced model and to the number ns of realizations used in the Monte Carlo numerical
simulations is controlled by the norm jjjQnjjj defined by Eq. (19). By using the usual estimation of the
mathematical expectation operator E, convergence with respect to n and ns is studied by constructing the
function ðns; nÞ 7! convðns; nÞ defined by

convðns; nÞ ¼
1

ns

Xns

k¼1

Z
R

kQnðt; ykÞk
2 dt

( )1=2

(32)

in which Qnðt; y1Þ; . . . ;Qnðt; yns
Þ are ns independent realizations of Q

nðtÞ.

3.3.5. Statistical estimations of the random energies

It is of interest to construct statistical estimations for the stochastic process fHnðoÞ;o 2 Rg defined
by Eq. (22) and for the random variables En

1, En
2, En

3, En
13 defined by Eq. (24), whose realizations are

directly deduced from the realizations of Qn. Let X be the positive-valued random variable representing either
HnðoÞ for o fixed in R or any of the random variables En

1, En
2, En

3, En
13. The mean value mX ¼ EfX g is

estimated by

emX ¼
1

ns

Xns

k¼1

X ðykÞ (33)

in which X ðy1Þ; . . . ;X ðyns
Þ are ns independent realizations of X . The confidence region associated with this

estimate is constructed by using the quantiles. Let F X be the cumulative distribution function (continuous
from the right) of random variable X such that F X ðxÞ ¼ PðXpxÞ. For 0opo1, the pth quantile (or fractile) of
FX is defined by

zðpÞ ¼ inffx : FX ðxÞXpg. (34)
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Then the upper envelope xþ and the lower envelope x� of the confidence region with probability level Pc are
defined by

xþ ¼ zðð1þ PcÞ=2Þ; x� ¼ zðð1� PcÞ=2Þ. (35)

The estimations of xþ and x� are performed by using the sample quantiles. Let x1 ¼ X ðy1Þ; . . . ; xns
¼ X ðyns

Þ. Letex1o � � �oexns
be the order statistics associated with x1o � � �oxns

. The envelopes are then estimated by using

xþ ’ exjþ ; jþ ¼ fixðnsð1þ PcÞ=2Þ, (36)

x� ’ exj� ; j� ¼ fixðnsð1� PcÞ=2Þ, (37)

where fixðzÞ is the integer part of the real number z.

4. Application to a Timoshenko beam with an elastic barrier

This section deals with the application of the theory developed in the previous sections. The linear part of
the continuous system is a Timoshenko beam with added dissipation. The nonlinear force is due to a
symmetrical linear elastic barrier.

4.1. Description of the nonlinear elastic dynamical system

The geometrical properties of the beam are: length 1m, width 0:1m, height 0:1m. The boundary conditions
are of a cantilever beam, with the free end having its motion limited by an elastic barrier at a distance of �,
from both sides of the beam. The gap � is considered as a parameter. The beam is homogeneous and isotropic,
with material properties: density 7500 kg=m3, Young’s modulus 2:1� 1010 N=m2, Poisson’s coefficient 0:3,
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Fig. 4. dm ¼ 0:1 and db ¼ 0:05: random fraction functions Z 7!En
1ðZÞ;E

n
2ðZÞ;E

n
3ðZÞ and En

13ðZÞ related to the random mechanical energy

transferred to band: (a) B1; (b) B2; (c) B3 and B1 [ B3. Mean system (thin solid line). Mean value for the stochastic system (thick solid line).

Confidence region (grey region).
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shearing correction factor 5=6. The damping model is introduced by seeting the model damping rate
to 0:02 for the first three modes, to 0:01 for the fourth mode and to 0:005 for the others. The elasticity constant
of the barrier is kb ¼ 107 N=m. The function fNL defined in Eq. (1) is then independent of the velocity and is
written as

f NLðyÞ ¼
0; jyjp�;

�kbðy� � signðyÞÞ; jyj4�:

(
(38)

4.2. Mean model

4.2.1. Mean finite element model

The mean finite element model of the cantilever beam consists of 100 2-nodes Timoshenko beam elements.
The first six computed eigenfrequencies are 26:9, 162:7, 432:9, 794:1, 1219:2 and 1685:3Hz.
4.2.2. Description of excitation force

The vector load is defined by Eq. (2). The amplitude a is considered as a parameter. The force is a point
force applied at the middle point of the beam. The impulse function g is such that

gðtÞ ¼
1

pt
fsinðtðOc þ DO=2ÞÞ � sinðtðOc � DO=2ÞÞg, (39)
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Fig. 5. dm ¼ 0:1 and db ¼ 0:05. For log10 Z ¼ �6:0, cumulative distribution function: (a) z1 7!ProbafEn
1ðZÞpz1g; (b)

z2 7!ProbafEn
2ðZÞpz2g; (c) z3 7!ProbafEn

3ðZÞpz3g; and (d) z13 7!ProbafEn
13ðZÞpz13g related to the random mechanical energy transferred

to band B1;B2;B3 and B1 [ B3, respectively.
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whose Fourier transform is bgðoÞ ¼ 1B2[B2
. The frequency band B2 is defined by Eq. (3) with omin ¼ 2pf min and

omax ¼ 2pf max with f min ¼ 148Hz and f max ¼ 178Hz. The corresponding bandwidth DO ¼ 2pDf is then such
that Df ¼ 30Hz and the central frequency Oc ¼ 2pf c is such that f c ¼ 163Hz. Consequently, the frequency
band of excitation is centered on the second eigenfrequency of the linear system.

4.2.3. Reduced mean model

The numerical results presented in this section are computed with n ¼ 40, and the modes were calculated
with the finite element model. This value was chosen to assure good convergence for the deterministic and the
stochastic solutions.

4.3. Probabilistic model of uncertainties

4.3.1. Parametric probabilistic model of the barrier

Since the gap is taken as a parameter in the problem it is not considered as uncertain. On the other hand, the
stiffness in the barrier is uncertain and modelled by a positive-valued random variable Kb whose mean value is
kb, for which the coefficient of variation db is 0 (no uncertainty) or 0:05 (uncertainty) and whose probability
distribution is the Gamma law.

4.3.2. Non-parametric probabilistic model of the beam

As explained in Section 3.3.2, the uncertainty levels for the mass, damping, and stiffness of the linear system
are controlled by the dispersion parameters dM , dD, and dK , respectively. In order to simplify the presentation,
have only the cases dM ¼ dD ¼ dK are considered. The common valued will be denoted by dm. Two values are
considered dm ¼ 0 (no uncertainty) and dm ¼ 0:1 (uncertainty).
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Fig. 6. dm ¼ 0:1 and db ¼ 0:05. For (a) log10 Z ¼ �6:0 (b) log10 Z ¼ �7:5 and (c) log10 Z ¼ �4:6, graphs of the random normalized energy

density f 7!Hn
dBð2pf Þ. Mean system (thin solid line). Mean value for the stochastic system (thick solid line). Confidence region

(grey region).
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Fig. 7. dm ¼ 0 and db ¼ 0:05: Random fraction functions Z 7!En
1ðZÞ;E

n
2ðZÞ;E

n
3ðZÞ and En

13ðZÞ related to the random mechanical energy

transferred to band: (a) B1 (b) B2; (c) B3; and (d) B1 [ B3. Mean system (thin solid line). Mean value for the stochastic system (thick solid

line). Confidence region (grey region).
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4.4. Numerical integration parameters

Let f 04f max be the upper frequency such that the total energy of the response of the nonlinear dynamical
system is included in the frequency band ½�f 0; f 0�. For all the numerical results presented below, a
convergence analysis has been performed with respect to the value of f 0. The smallest value of f 0 for which all
the results converged is f 0 ¼ 600Hz and all the results presented below correspond to this value of f 0. The
integration time step is taken as Dt ¼ 1=ð2f 0Þ and the time integration T ¼ ntimeDt with ntime ¼ 8192. The
integration in R is approximated by an integration over the interval ½t0; t1� in which t0 ¼ �T=2 and
t1 ¼ T=2� Dt. The sampling time points are tk ¼ t0 þ kDt; k ¼ 0; . . . ; ntime � 1. Because the Fourier transform
is computed by using the FFT algorithm, the integration step in the frequency domain is Do ¼ 2o0=nfreq with
nfreq ¼ ntime. The sampling frequency points are ok ¼ �o0 þ kDo; k ¼ 0; . . . ; nfreq � 1. Eq. (31) is integrated
over ½t0; t1� with zero initial conditions at t0. The given choice of the parameters are such that EfkQðt1; yÞk2g is
negligible at the final time t1.

4.5. Numerical results

Fig. 1 is a graph of the impulse function t 7! gðtÞ, whose Fourier transform f 7! bgð2pf Þ is shown in Fig. 2.
Fig. 3 is the function ns 7! convðns; nÞ defined by Eq. (32) for n ¼ 40. The convergence is reached for nsX1500.
Below, the results are computed with ns ¼ 2000. Recall that Z ¼ �=a is the parameter that is used in the
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analysis of the random transferred energies outside the excitation band B2. All the confidence regions shown in
this work correspond to a probability level Pc ¼ 0:96.

The other results can be presented in several ways. To save space we show only one of the possible ways as
an example. In the next section other forms to analyze the results are suggested. The example we have chosen
to present is where the results are arranged by the values of the model and data uncertainties, ðdm; dbÞ. This will
give three blocks of results indexed by ð0:1; 0:05Þ, ð0; 0:05Þ, and ð0:1; 0Þ. We present now the first block, the
other two are similar. In Fig. 4 are shown the random functions given in Eq. (25) that describe the random
function energies in the frequency bands B1, B2, B3, B1 [ B3 (Figs. 4(a)–(d), respectively). The mean system
results are shown along with the mean of the stochastic system and the associated confidence limits. Fig. 5
shows, for a fixed value of Z given by log10ðZÞ ¼ �6:0, the cumulative distribution functions of the energies.
Fig. 6 shows the density function defined by Eqs. (22) and (23) for three fixed values of Z such that
log10ðZÞ ¼ �6:0;�7:5;�4:6, respectively (Figs. 6(a)–(c), respectively). Similar results (without cumulative
distribution functions), for the case ð0; 0:05Þ are shown in Figs. 7 and 8, and for the case ð0:1; 0Þ are shown in
Figs. 9 and 10.
5. Analysis of the results and conclusions

5.1. Some remarks about the deterministic narrow-band excitation

As explained in the introduction section, the excitation has been modelled by a deterministic narrow-band
signal (see Figs. 1 and 2). Recall that the objective of the paper is to analyze the nonlinear dynamical response
of systems excited at a given resonance by a harmonic excitation. Since the mechanical system is uncertain,
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Fig. 8. dm ¼ 0 and db ¼ 0:05. For (a) log10 Z ¼ �6:0, (b) log10 Z ¼ �7:5 and (c) log10 Z ¼ �4:6, graphs of the random normalized energy

density f 7!Hn
dBð2pf Þ. Mean system (thin solid line). Mean value for the stochastic system (thick solid line). Confidence region

(grey region).
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Fig. 9. dm ¼ 0:1 and db ¼ 0: random fraction functions Z 7!En
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transferred to band: (a) B1, (b) B2, (c) B3 and (d) B1 [ B3. Mean system (thin solid line). Mean value for the stochastic system (thick solid

line). Confidence region (grey region).
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a narrow-band signal is chosen in order to give robustness to this excitation. Fig. 6 shows that the considered
resonance of the uncertain system is effectively excited by the chosen narrow-band signal.

5.2. Maximum of nonlinearity effects as a function of Z

The measures of nonlinearity is given by the fraction of energy that is transferred outside the band of
excitation. Figs. 4, 7 and 9 show that a maximum of nonlinearity effect is obtained for mid-value of Z ¼ �=a

and not for the extremes, near zero or very large. Near zero means that the gap is very small with respect to the
displacement, that is there are a large number of impacts with low energy (small gap). This case is frequent, for
instance, in Robotics (looseness). Very large means that the gap is sufficiently big with respect to the
displacement such that the number of impacts is small and with low energy. In the medium range, the impacts
are more frequent and also more energetic. It is worthwhile to note that as Z is the ratio of the gap and the
amplitude of the excitation, even for very small gaps the effect of Z can be large depending on the force. For
example, for � ¼ 2� 10�6 m, a force of 1N corresponds to a numerical value of Z ¼ 2� 10�6, and Fig. 4(d)
shows that for this value there is a transfer of 30–50 percent of the energy outside the band of excitation.

5.3. Relation of the nonlinearities with the spectral density

Figs. 6(b), 8(b) and 10(b) (corresponding to Z ¼ 10�7:5, a near zero gap case) shows that although there is a
small amount of energy transferred outside the band of excitation the effect of this transfer on the spectral
density is very large causing the response to become a broad-band signal. From Figs. 6(c), 8(c) and (10c)
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Fig. 10. dm ¼ 0:1 and db ¼ 0. For (a) log10 Z ¼ �6:0, (b) log10 Z ¼ �7:5 and (c) log10 Z ¼ �4:6, graphs of the random normalized energy

density f 7!Hn
dBð2pf Þ. Mean system (thin solid line). Mean value for the stochastic system (thick solid line). Confidence region

(grey region).
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(Z ¼ 10�4:6, which is a very large gap case) it can be seen that there is a very small amount of energy
transferred outside the band of excitation so the system is nearly linear.

5.4. Uncertainties effects

It can be seen in Fig. 4 that the point of maximum energy transfer due to nonlinearities is also the point of
less robustness with respect to uncertainties. On the other hand, the two limiting cases, near zero and very
large Z, are relatively robust with respect to uncertainties. The effect of two types of uncertainties: barrier
uncertainties and model uncertainties for the continuous linear system are now discussed. Fig. 7
(corresponding to barrier uncertainties) and Fig. 9 (corresponding to model uncertainties) clearly show that
the nonlinearity effects are less robust for model uncertainties than for barrier uncertainties. This statement
results from the following considerations. There is a loss of robustness induced by barrier uncertainties and by
model uncertainties in the continuous linear subsystems (see Figs. 7(d) and 9(d)) where the confidence region
are significantly large. Comparing Fig. 4(d) with Fig. 9(d) shows that the two confidence regions are almost
equal. This means that the effect of barrier uncertainties are less than the effects of model uncertainties. In
addition, it can be seen that the confidence region in Fig. 7(d) is included (set inclusion) in the confidence
region of Fig. 4(d). Also from Figs. 6(a), 8(a) and 10(a) it can be seen that the maximum nonlinearity effects on
the frequency response in the sub-harmonic and super-harmonic ranges is less robust for model uncertainties
than for barrier uncertainties. On the other hand, the frequency response in the frequency band of excitation is
robust with respect to uncertainties. The probability of the random energies can be estimated from the data in
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Fig. 5. For instance, from Fig. 5(d) it can be seen that the probability for greater than 20% of the energy to be
transferred outside the band of excitation is 0:75, and to be larger than 40 percent the probability is 0:20.

5.5. Scope of the proposed method and its limitations

It should be noted that the external excitation force is a narrow-band signal that is completely known. In
this context, the proposed method can be used to me as we the nonlinearity effects for the entire system.
However, with this method it is not possible to measure the nonlinearity effects of its subsystems.

The probabilistic approach presented can be used on any system composed of a continuous linear subsystem
(for instance, a Timoshenko beam) coupled with any discrete nonlinear subsystem (for instance, an elastic
barrier). Nevertheless, this kind of approach cannot be applied to a nonlinear continuous system such as an
elastic system with large deformations. For such a case additional developments are required.
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Tendências em Matematica Aplicada e Computacional, TEMA 3 (2) (2002) 217–226.
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